Double Checking

class SingleDoubleCheckStatistics(**data)

Bases: BaseModel

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

setup_clauses: list[str]

The setup clauses in JGEX format.

aux_clauses_used: list[str]

The aux clauses that were used in this double check in JGEX format.

aux_clauses_unused: list[str]

The aux clauses that were not used in this double check in JGEX format.

alpha_mapping: dict[PredicateArgument, PredicateArgument]

The mapping from the original points to the alphabetized points.

run_infos: RunInfos

The statistics for the solver run on the subproblem.

double_check_setup: JGEXSetupData

The double-checked proof data of the subproblem in case it was solvable.

double_check_proof: ProofData | None

The double-checked proof data of the subproblem in case it was solvable.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class DoubleCheckStatistics(**data)

Bases: BaseModel

Statistics for a double check run.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

single_double_check_stats: list[SingleDoubleCheckStatistics]

Statistics for each aux double check.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

true_aux_clauses: list[str]

The double-checked true aux clauses.

false_positive_aux_clauses: list[str]

The double-checked false positive aux clauses.

final_proof: ProofData | None

The final double-checked proof data of the subproblem with all and only true aux clauses.

training_data: TrainingDatapoint | None

The alphabetized i/o training data for the subproblem for each aux construction in it plus the proof to predict.

do_double_check(subproblem, larger_problem, large_nc_problem, clauses_consequences, solver, aux_tag, rng)
Return type:

DoubleCheckStatistics

points_requirements_graph_from_jgex_clauses(aux_clauses)