Parallelism

class Para(**data)

Bases: PredicateInterface

para A B C D - Represent that the line AB is parallel to the line CD.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

predicate_type: Literal[PredicateType.PARALLEL]
line1: Line
line2: Line
static preparse(args)

Preparse the predicate arguments.

Return type:

tuple[NewType(PredicateArgument, str), ...] | None

check_numerical()

Check numerically the predicate.

Return type:

bool

symbols(symbols)

Make symbols for the predicate in the symbols graph.

Return type:

tuple[LineSymbol | CircleSymbol, ...]

to_constructive(point)
Return type:

str

to_tokens()

Convert the predicate to a tuple of strings.

Return type:

tuple[NewType(PredicateArgument, str), ...]

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class NPara(**data)

Bases: NumericalPredicate

npara A B C D - Represent that lines AB and CD are NOT parallel.

It can only be numerically checked (angular coefficient of the equations of the lines are different).

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

predicate_type: Literal[PredicateType.N_PARALLEL]
line1: Line
line2: Line
static preparse(args)

Preparse the predicate arguments.

Return type:

tuple[NewType(PredicateArgument, str), ...] | None

check_numerical()

Check numerically the predicate.

Return type:

bool

to_tokens()

Convert the predicate to a tuple of strings.

Return type:

tuple[NewType(PredicateArgument, str), ...]

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].