Triangles Similar
- two_triangles(a, b, c, p, q, r)
- Return type:
Optional[tuple[TypeVar(T, bound=str),TypeVar(T, bound=str),TypeVar(T, bound=str),TypeVar(T, bound=str),TypeVar(T, bound=str),TypeVar(T, bound=str)]]
- class SimtriClock(**data)
Bases:
PredicateInterfacesimtri A B C P Q R -
Represent that triangles ABC and PQR are similar under orientation-preserving transformations taking A to P, B to Q and C to R.
It is equivalent to the three eqangle and eqratio predicates on the corresponding angles and sides.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- predicate_type: Literal[PredicateType.SIMTRI_CLOCK]
- triangle1: Triangle
- triangle2: Triangle
- static preparse(args)
Preparse the predicate arguments.
- Return type:
Optional[tuple[NewType(PredicateArgument,str),...]]
- check_numerical()
Check numerically the predicate.
- Return type:
bool
- to_tokens()
Convert the predicate to a tuple of strings.
- Return type:
tuple[NewType(PredicateArgument,str),...]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class SimtriReflect(**data)
Bases:
PredicateInterfacesimtrir A B C P Q R -
Represent that triangles ABC and PQR are similar under orientation-preserving transformations taking A to P, B to Q and C to R.
It is equivalent to the three eqangle and eqratio predicates on the corresponding angles and sides.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- predicate_type: Literal[PredicateType.SIMTRI_REFLECT]
- triangle1: Triangle
- triangle2: Triangle
- static preparse(args)
Preparse the predicate arguments.
- Return type:
tuple[NewType(PredicateArgument,str),...] |None
- check_numerical()
Check numerically the predicate.
- Return type:
bool
- to_tokens()
Convert the predicate to a tuple of strings.
- Return type:
tuple[NewType(PredicateArgument,str),...]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].