Collinearity
- class Coll(**data)
Bases:
PredicateInterface
coll A B C … - Represent that the 3 (or more) points in the arguments are collinear.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- predicate_type: Literal[PredicateType.COLLINEAR]
- points: tuple[Point, ...]
- static preparse(args)
Preparse the predicate arguments.
- Return type:
tuple
[NewType
(PredicateArgument
,str
),...
] |None
- check_numerical()
Check numerically the predicate.
- Return type:
bool
- add(proof_state)
Add the predicate to the proof state.
Return a tuple of predicates that are direct consequences of the predicate by definition.
- Return type:
tuple
[PredicateInterface
,...
]
- check(proof_state)
Check symbolically the predicate in the current proof state.
If the predicate cannot be decided, return None.
- Return type:
bool
|None
- symbols(symbols)
Make symbols for the predicate in the symbols graph.
- Return type:
tuple
[LineSymbol
|CircleSymbol
,...
]
- to_constructive(point)
- Return type:
str
- to_tokens()
Convert the predicate to a tuple of strings.
- Return type:
tuple
[NewType
(PredicateArgument
,str
),...
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class NColl(**data)
Bases:
NumericalPredicate
ncoll A B C … - Represent that any of the 3 (or mo}re) points is not aligned with the others.
Numerical only.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- predicate_type: Literal[PredicateType.N_COLLINEAR]
- points: tuple[Point, ...]
- static preparse(args)
Preparse the predicate arguments.
- Return type:
Optional
[tuple
[NewType
(PredicateArgument
,str
),...
]]
- check_numerical()
Check numerically the predicate.
- Return type:
bool
- to_tokens()
Convert the predicate to a tuple of strings.
- Return type:
tuple
[NewType
(PredicateArgument
,str
),...
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].