Collinearity

class Coll(**data)

Bases: PredicateInterface

coll A B C … - Represent that the 3 (or more) points in the arguments are collinear.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

predicate_type: Literal[PredicateType.COLLINEAR]
points: tuple[Point, ...]
static preparse(args)

Preparse the predicate arguments.

Return type:

tuple[NewType(PredicateArgument, str), ...] | None

check_numerical()

Check numerically the predicate.

Return type:

bool

add(proof_state)

Add the predicate to the proof state.

Return a tuple of predicates that are direct consequences of the predicate by definition.

Return type:

tuple[PredicateInterface, ...]

check(proof_state)

Check symbolically the predicate in the current proof state.

If the predicate cannot be decided, return None.

Return type:

bool | None

symbols(symbols)

Make symbols for the predicate in the symbols graph.

Return type:

tuple[LineSymbol | CircleSymbol, ...]

to_constructive(point)
Return type:

str

to_tokens()

Convert the predicate to a tuple of strings.

Return type:

tuple[NewType(PredicateArgument, str), ...]

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

class NColl(**data)

Bases: NumericalPredicate

ncoll A B C … - Represent that any of the 3 (or mo}re) points is not aligned with the others.

Numerical only.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

predicate_type: Literal[PredicateType.N_COLLINEAR]
points: tuple[Point, ...]
static preparse(args)

Preparse the predicate arguments.

Return type:

Optional[tuple[NewType(PredicateArgument, str), ...]]

check_numerical()

Check numerically the predicate.

Return type:

bool

to_tokens()

Convert the predicate to a tuple of strings.

Return type:

tuple[NewType(PredicateArgument, str), ...]

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].