Perpendicularity
- class Perp(**data)
Bases:
PredicateInterface
perp A B C D - Represent that the line AB is perpendicular to the line CD.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- predicate_type: Literal[PredicateType.PERPENDICULAR]
- line1: Line
- line2: Line
- static preparse(args)
Preparse the predicate arguments.
- Return type:
tuple
[NewType
(PredicateArgument
,str
),...
] |None
- check_numerical()
Check numerically the predicate.
- Return type:
bool
- symbols(symbols)
Make symbols for the predicate in the symbols graph.
- Return type:
tuple
[LineSymbol
|CircleSymbol
,...
]
- to_constructive(point)
- Return type:
str
- to_tokens()
Convert the predicate to a tuple of strings.
- Return type:
tuple
[NewType
(PredicateArgument
,str
),...
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class NPerp(**data)
Bases:
NumericalPredicate
nperp A B C D - Represent that lines AB and CD are NOT perpendicular.
Numerical only.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- predicate_type: Literal[PredicateType.N_PERPENDICULAR]
- line1: Line
- line2: Line
- static preparse(args)
Preparse the predicate arguments.
- Return type:
tuple
[NewType
(PredicateArgument
,str
),...
] |None
- check_numerical()
Check numerically the predicate.
- Return type:
bool
- to_tokens()
Convert the predicate to a tuple of strings.
- Return type:
tuple
[NewType
(PredicateArgument
,str
),...
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].