Llm Input
Module to convert problems to and from LLM input.
- new_problem_from_llm_aux_output(initial_problem, aux_output, aux_tag)
- Return type:
- problem_to_llm_input(problem, aux_tag, rng=None, max_attempts=200)
Convert a problem to a string that can be used as input for the LLM.
- Parameters:
problem (
JGEXFormulation
) – The problem to convert.aux_tag (
str
) – The tag to use for the aux clauses.rng (
Generator
|None
) – The random number generator to use.max_attempts (
int
) – The maximum number of attempts to make for building the problem.
- Return type:
str
- problem_to_llm_input_without_predicates(problem)
- Return type:
str
- class TrainingDatapoint(**data)
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- aux_io: list[AuxTrainingDatapoint]
Aux input and output.
- proof_output: str
Proof to predict.
- classmethod from_proof_data(setup_data, proof_data, aux_tag)
- Return type:
Self
- classmethod from_proof_data_aux_combinations(setup_data, proof_data, aux_tag)
- Return type:
Self
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class AuxTrainingDatapoint(**data)
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- input: str
Setup and given aux clauses plus the goal.
- aux_output: str
Aux constructions plus theirs predicates to predict.
- classmethod from_setup_data(setup_data, aux_tag)
- Return type:
Self
- classmethod from_setup_data_aux_combinations(setup_data, aux_tag)
- Return type:
list
[Self
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].